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1 System overview

We use the HybVIO [I] method developed by
our group. It is a filtering-based VIO part of the
MSCKF [2] family, with an optional optimization-
based SLAM module. The filtering is based on the
EKF framework and supports stereo input, whereas
the SLAM is monocular and similar to ORB-SLAM?2
(based on OpenVSLAM [3]). The SLAM runs BA
in the local neighborhood of the current position and
does not perform loop closures.

While HybVIO has support for post-processing us-
ing global BA optimization, for this challenge we ran
the system in a causal SLAM configuration.

2 Sensors

We utilize only the Alphasense IMU and the two
front-facing cameras as stereo, all at maximum avail-
able framerates (approx. 10Hz and 200Hz). The cam-
eras are installed upside-down relative to each other,
which we handle by rotating the frames from one
camera by 180 degrees and modifying the intrinsic
and extrinsic camera parameters accordingly. We ig-
nore frames that lack stereo pair with a matching
timestamp.

We use static camera parameters provided by the
dataset authors, with the Kannala-Brandt camera
model [1]. The provided IMU bias values are not
used, as we rely on online estimation of the biases
and additionally a camera-to-IMU time shift value.

3 Algorithm parameters

We use for all the sequences the parameter config-
uration from [1] called Normal SLAM, without any
modifications. Table 1 shows the relevant column

Table 1: Algorithm parameters.

Normal

Parameter SLAM

feature type GFTT
detector subpixel adjustment yes
max. features stereo 200
feature max. itr. 20
tracker window size 31
visual @ 20
updates "‘target 20
NFIFO 17
SLAM "BA 20
Tmatching 20

Table 2: Hardware.

CPU AMD Ryzen 5900X
GPU Geforce RTX 3080 Ti
RAM 32GB
Disk type SSD
(O8] Ubuntu 21.04
from a table presented in [1]. See the article for mean-

ing of the rows.

4 Timing

We evaluated the method on a desktop machine,
using GPU acceleration for some image processing
operations. The hardware used is shown in Table 2,
and the processing times in Table 3.
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Table 3: Timings for each sequence.

Sequence Processing time (s) Sequence length (s)
uzh tracking area run2 50 89
IC Office 1 108 200
Office Mitte 1 144 264
Parking 1 298 582
Basement 1 62 113
Basement 3 160 331
Basement 4 159 350

LAB Survey 2 80 136 B

Construction Site 1 110 199 <
Construction Site 2 212 399
Campus 1 222 430
Campus 2 193 375
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Figure 2: uzh tracking area run2



